Skip to content

Examining a Table

Metadata

The delta log maintains basic metadata about a table, including:

  • A unique id
  • A name, if provided
  • A description, if provided
  • The list of partitionColumns.
  • The created_time of the table
  • A map of table configuration. This includes fields such as delta.appendOnly, which if true indicates the table is not meant to have data deleted from it.

Get metadata from a table with the DeltaTable.metadata() method:

>>> from deltalake import DeltaTable
>>> dt = DeltaTable("../rust/tests/data/simple_table")
>>> dt.metadata()
Metadata(id: 5fba94ed-9794-4965-ba6e-6ee3c0d22af9, name: None, description: None, partitionColumns: [], created_time: 1587968585495, configuration={})
let table = deltalake::open_table("../rust/tests/data/simple_table").await?;
let metadata = table.metadata()?;
println!("metadata: {:?}", metadata);

Schema

The schema for the table is also saved in the transaction log. It can either be retrieved in the Delta Lake form as Schema or as a PyArrow schema. The first allows you to introspect any column-level metadata stored in the schema, while the latter represents the schema the table will be loaded into.

Use DeltaTable.schema to retrieve the delta lake schema:

>>> from deltalake import DeltaTable
>>> dt = DeltaTable("../rust/tests/data/simple_table")
>>> dt.schema()
Schema([Field(id, PrimitiveType("long"), nullable=True)])

Use DeltaTable::get_schema to retrieve the delta lake schema

let table = deltalake::open_table("./data/simple_table").await?;
let schema = table.get_schema()?;
println!("schema: {:?}", schema);

These schemas have a JSON representation that can be retrieved.

To reconstruct from json, use DeltaTable.schema.to_json().

>>> dt.schema().to_json()
'{"type":"struct","fields":[{"name":"id","type":"long","nullable":true,"metadata":{}}]}'

Use serde_json to get the schema as a json.

println!("{}", serde_json::to_string_pretty(&schema)?);

It is also possible to retrieve the Arrow schema:

Use DeltaTable.schema.to_pyarrow() to retrieve the PyArrow schema:

>>> dt.schema().to_pyarrow()
id: int64
let arrow_schema = table.snapshot()?.arrow_schema()?;
println!("arrow_schema: {:?}", schema);

History

Depending on what system wrote the table, the delta table may have provenance information describing what operations were performed on the table, when, and by whom. This information is retained for 30 days by default, unless otherwise specified by the table configuration delta.logRetentionDuration.

Note

This information is not written by all writers and different writers may use different schemas to encode the actions. For Spark\'s format, see: https://docs.delta.io/latest/delta-utility.html#history-schema

To view the available history, use DeltaTable.history:

from deltalake import DeltaTable

dt = DeltaTable("../rust/tests/data/simple_table")
dt.history()
[{'timestamp': 1587968626537, 'operation': 'DELETE', 'operationParameters': {'predicate': '["((`id` % CAST(2 AS BIGINT)) = CAST(0 AS BIGINT))"]'}, 'readVersion': 3, 'isBlindAppend': False},
{'timestamp': 1587968614187, 'operation': 'UPDATE', 'operationParameters': {'predicate': '((id#697L % cast(2 as bigint)) = cast(0 as bigint))'}, 'readVersion': 2, 'isBlindAppend': False},
{'timestamp': 1587968604143, 'operation': 'WRITE', 'operationParameters': {'mode': 'Overwrite', 'partitionBy': '[]'}, 'readVersion': 1, 'isBlindAppend': False},
{'timestamp': 1587968596254, 'operation': 'MERGE', 'operationParameters': {'predicate': '(oldData.`id` = newData.`id`)'}, 'readVersion': 0, 'isBlindAppend': False},
{'timestamp': 1587968586154, 'operation': 'WRITE', 'operationParameters': {'mode': 'ErrorIfExists', 'partitionBy': '[]'}, 'isBlindAppend': True}]
let table = deltalake::open_table("../rust/tests/data/simple_table").await?;
let history = table.history(None).await?;
println!("Table history: {:#?}", history);

Current Add Actions

The active state for a delta table is determined by the Add actions, which provide the list of files that are part of the table and metadata about them, such as creation time, size, and statistics. You can get a data frame of the add actions data using DeltaTable.get_add_actions:

>>> from deltalake import DeltaTable
>>> dt = DeltaTable("../rust/tests/data/delta-0.8.0")
>>> dt.get_add_actions(flatten=True).to_pandas()
                                                    path  size_bytes   modification_time  data_change  num_records  null_count.value  min.value  max.value
0  part-00000-c9b90f86-73e6-46c8-93ba-ff6bfaf892a...         440 2021-03-06 15:16:07         True            2                 0          0          2
1  part-00000-04ec9591-0b73-459e-8d18-ba5711d6cbe...         440 2021-03-06 15:16:16         True            2                 0          2          4
let table = deltalake::open_table("./data/simple_table").await?;
let actions = table.snapshot()?.add_actions_table(true)?;
println!("{}", pretty_format_batches(&vec![actions])?);

This works even with past versions of the table:

>>> dt = DeltaTable("../rust/tests/data/delta-0.8.0", version=0)
>>> dt.get_add_actions(flatten=True).to_pandas()
                                                path  size_bytes   modification_time  data_change  num_records  null_count.value  min.value  max.value
0  part-00000-c9b90f86-73e6-46c8-93ba-ff6bfaf892a...         440 2021-03-06 15:16:07         True            2                 0          0          2
1  part-00001-911a94a2-43f6-4acb-8620-5e68c265498...         445 2021-03-06 15:16:07         True            3                 0          2          4
let mut table = deltalake::open_table("./data/simple_table").await?;
table.load_version(0).await?;
let actions = table.snapshot()?.add_actions_table(true)?;
println!("{}", pretty_format_batches(&vec![actions])?);